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The coding performance of the Probe-Orbiter-Earth communication link is ana-

lyzed and compared for several cases. It is assumed that the coding system consists
of a convolutional code at the Probe, a quantizer and another convolutional code

at the Orbiter, and two cascaded Viterbi decoders or a combined decoder on the

ground.

I. Introduction

Upon arrival at Jupiter on December 7, 1995, the

Galileo spacecraft (herein referred to as the Orbiter) will

relay data back to Earth from an atmospheric Probe re-
leased 5 months earlier. For about 75 rain, data will be

transmitted to the Orbiter from the Probe as it descends

on a parachute to a pressure depth of 20-30 bars in the
Jovian atmosphere. Shortly after the end of Probe relay,

the Orbiter will ignite its rocket motor to insert into orbit

about Jupiter. The orbital phase of the mission, referred
to as the satellite tour, lasts nearly 2 years, during which
time Galileo will complete 10 orbits about Jupiter [1].

The Probe-Orbiter-Earth communication link is illus-

trated in Fig. 1. The data sent from the Probe to the
Orbiter are convolutionally encoded with the NASA stan-

dard (7,1/2) convolutional code. On board the Orbiter,
receivers acquire, track, and package the Probe's data to-

gether with radio science and engineering data. The re-
ceived encoded data are 3-bit quantized but not convolu-

tionally decoded at the Orbiter.

Before the high-gain antenna anomaly occurred, tile

p!an was to send Probe data packets over the Orbiter-

to-Earth downlink in real time as the data were sent from

the Probe to the Orbiter. Simultaneously, a backup copy
of the received Probe data would be recorded via the Or-

biter's tape recorder for later playback if needed. If Galileo
is forced to use its low-gain antenna for the Orbiter-to-

Earth downlink, real-time relay of the Probe's data is

no longer possible, and the data playback from the tape
recorder is now the primary rather than the backup system

for returning the data to Earth.

The data to be played back from the tape recorder con-

sist of 3-bit quantized convolutionally encoded symbols
sent over the Probe-to-Orbiter link, and they are packaged

together with other data in the Probe's data packet for-
mat. In particular, each 3-bit received symbol is padded
with a zero fill bit in order to occupy a half-byte in the

data packet.

As a backup to the tape recorder system, the Galileo

Project now proposes to additionally record a reduced ver-
sion of the Probe data in the Orbiter's computer memory

to protect against catastrophic tape recorder failure. The
data saved in this mode are 1-bit quantized received sym-

bol data for a reduced portion of the Probe's total lifetime.
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All Probe data sent from the Orbiter to Earth are to

be convolutionally encoded with the same NASA stan-

dard (7,1/2) convolutional code. Additionally, the tape-
recorded data are to be encoded with a (24,12) Golay

outer code (as was the original real-time data). However,

the data played back from computer memory will not be

Golay encoded. On the ground, the plan is to perform all

decoding operations independently, i.e., to first decode the
Orbiter-to-Earth convolutional code, then the Golay code

(if present), and finally the Probe-to-Orbiter code.

This article investigates the performance of such a com-

munication link with 1-bit and 3-bit quantization at the

Orbiter. Since the errors at the output of the inner Viterbi

decoder come in bursts, the possibility of interleaving the
data before the inner convolutional code to enhance the

performance is also investigated. For the case of 1-bit

quantization at the Orbiter, the possibility of using a sin-
gle Viterbi decoder on the ground to decode the data en-

coded by the cascaded convolutional codes is also analyzed.

The 3-bit quantization study is treated separately in Ap-

pendix B because it is based on a simplified model that

does not strictly apply to the actual Galileo Probe coding

system.

II. Simulation Study of Coding System
"1 -bit/Nominal"

The coding system block diagram for coding system "l-

bit/Nominal" (nominal system with 1-bit quantization at
the Orbiter) is shown in Fig. 2. Both convolutional codes

have constraint length K --- 7 and code rate r = 1/2.

This case models the nominal backup system for the low-

gain mission Probe-Orbiter-Earth link when the received
symbols at the Probe are 1-bit quantized.

In this case, a hard limiter is used before the inner con-
volutional encoder. Let the information data rate at the

outer convolutional code be Rbl bits per second. Denote

the received power and the one-sided noise power spec-
tral density at the input of a hard limiter by/>1 and Nol,

respectively. Then the received information bit signal-to-

noise ratio BSNR1 at the input of the hard limiter can be
expressed as

Ebl />1

BSNR1 = No1 - NolRbl (1)

Let the information data rate at the input of the inner

convolutional code be Rb2. Let the received power and

one-sided power spectral density of the noise at the input

of the inner Viterbi decoder be P2 and No2, respectively.

Then the received bit signal-to-noise ratio at the input of
the inner Viterbi decoder can be written as

Eb2 P2

BSNR2- No2 - No2Rb2 (2)

Note that for real-time operation R_2 = 2Rbl. However,

the bits from the Probe are stored in the computer memory

and therefore Rb2 may not be related to Rbl. Simulation

results for end-to-end bit error rate (BER) probability are

shown in Figs. 3 and 4.

III. Simulation Study of Coding System
"1 -bit/Interleaved"

Bit errors at the output of Viterbi decoders occur in
bursts. This implies that an outer decoder based on a con-

ventional Viterbi algorithm is not optimal since it is not

matched to the statistics of channels with memory. There-

fore, the performance of coding system 1-bit/Nominal can

be improved by using an interleaver before the inner con-
volutional code and a deinterleaver after the inner Viterbi

decoder to randomize the bit errors at the output of the

inner Viterbi decoder. The coding system of Fig. 2 with

interleaving added to it is shown in Fig. 5. The end-to-end

system bit-error probability is needed for this case (coding

system "l-bit/Interleaved").

The channel between the output of the outer convo-

lutional code and the output of the hard ]imiter can be
modeled as a binary symmetric channel (BSC) with tran-

sition probability given by

_V No1

where Ebl/Nol represents the received bit signal-to-noise
ratio at the input of the hard limiter.

The channel between the input of the ideal interleaver

and the output of the deinterleaver can also be modeled

as a memoryless BSC with transition probability E2. This

channel consists of the inner convolutional code, the addi-
tive Gaussian noise channel, and the inner soft Viterbi

decoder. The transition probability c2 and the overall

bit error probability for the cascaded channel can be up-

per bounded analytically using transfer function bounding
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techniques. This analysis is included in Appendix A. For

comparison with coding system 1-bit/Nominal, more ac-

curate actual bit-error rate curves are obtained by direct

simulation. These simulation results are shown in Figs. 6
and 7.

IV. Simulation Study of Coding System
"1 -bit/Combined"

In order to improve the performance of the system in

Fig. 3 at high BSNR1, consider the modified system shown

in Fig. 8.

In this system, the signal received at the ground station

is decoded by a single Viterbi decoder which is designed for
two cascaded rate 1/2, K -- 7 convolutional codes with no

noise between the encoders. The equivalent code for these

two cascaded convolutional codes is a rate 1/4, K = 10
convolutional code that can be decoded with a 512-state

decoder. The design of such a decoder requires knowl-

edge of the generator polynomials of the equivalent code,

denoted by h0(x), hi(x), h2(x), and h3(x). These poly-
nomials can be found by the following method, which is a

simplification and generalization of the method described

in [4].

Consider the cascaded rate 1/2 convolutional codes

shown in Fig. 9. In this figure

go(x)= l + x + x 2 + x 3 + x 6

gl(x)= 1-Fz _+z 3-t-z 5-Fz 6

and M represents a time multiplexing operation. One can

obtain the generating polynomials of the equivalent code if
one can move the middle multiplexer to the output. This

can be done if one notes the equivalence between the two

circuits shown in Fig. 10. In this figure, re(x) and fo(X)

represent the even and odd components of the polynomial

f(x). The values f_(x) and fo(x) are related to f(x) as

f(x) : A(x 2) -4-Xfo(X 2)

Using this equivalence, one can move the middle multi-
plexer to the output and can obtain the circuit shown in

Fig. 11, which is equivalent to the circuit in Fig. 9. In

Fig. 11, goe(x),goo(X) and gl_(x),glo(X) are the even and

odd components of go(x) and gl(x), respectively. This re-
lation is defined as

where

g0_(x)= l+x+x a,

gl_(z) = 1 + x + z s,

Finally, using the equivalence between the two multi-

plexer circuits shown in Fig. 12, one obtains the structure
of the equivalent code shown in Fig. 13. In this figure,

h0(x), hi(x), h2(x), and ha(x) can be obtained as

ho(x) = 1+ x + x2 + x¢ T z7 T xS T x 9

hi(x) = l + z 2 + x 4 + x s + z s

h2(x) = x + x 2 + x 3 + x s + x 9

h3(x) = 1 + x 2 + x 3 + x 4 + x 5 -4-x ¢ -t- x 9

The system shown in Fig. 8 with a Viterbi decoder based

on the polynomials h0(x), hi(x), h2(x), and h3(z) was
simulated. The results of this simulation were compared

to the performance of coding system 1-bit/Nominal, as

shown in Fig. 14. As shown in this figure, there is more

than a 3-dB gain in BSNR2 for BSNR1 > 11 dB.

V. Conclusion

Comparing the BER results for coding systems 1-bit/

Nominal, 1-bit/Interleaved, and 1-bit/Combined, the au-
thors conclude that interleaving improves the performance

only for BSNR2 < 3 dB. For the coding system 1-bit/
Combined, there is a 3-dB improvement in BSNR2 if

BSNR1 is larger than 11 dB.

These results may be directly applicable to predicting

the end-to-end performance of Galileo's Probe data return
for the case without the intervening Golay code. They may

also be helpful in predicting performance of future missions

that might also use cascaded convolutional codes such as
Lander-Orbiter-Earth links.
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Fig. 1. Probe-Orbiter-Earth communication llnk.
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Fig. 2. Concatenated codas without Interleaving: coding system 1-bil/Nomlnal.
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Fig. 5. The coding system 1-bit/Interleaved.
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Fig. 9. Cascaded convolutlonel codes.

(a)

b(x) _ •

f{x) _ C(X)

(b)

a(x) -'_ re(x)

L,.t,o_x_l__3

b(_j--_, rorxj_ :. .
x,o(x;I

Fig. 10. Equivalent circuits: circuit (a) is equivalent

to circuit (b).
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Fig, 12. Equivalent multiplexers.
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ho(x) = go(x)goe(X)+ x gl (x)goo(X)

-._ hl(x)= go(x) gle(X) + x gl(x) glo (x)

•-_ h2(x)=go(x)goo(X)+gl(x)goe(X)

•1_ h3(x)=gO(x)glo (x)+ gl(x)gle (x) t-'_
Fig. 13. Simplified equivalent code.

M
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CODING SYSTEM
1-bit]NOMINAL

[]

CODING SYSTEM
-1 1-bit/COMBINED

-2 I I 1 t I
4 5 6 7 8 9 10 11 12 13 14 15 16

BSNR 1, dB

Fig. 14. Simulation comparison of the coding system 1-bW

Nominal and the coding system 1-bit/Comblned for BER = 10 -3.
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Appendix A

Transfer Function Bounds for Coding System "l-bit/Interleaved"

The transition probability _2 can be computed using
the transfer function bound on the bit error probability of

the inner channel as [2]

e2 <_ Q / Eb2 e-W:7_._._fT(D2,i)11= 1 (A-l)

where Eb2/No2 represents the received bit signal-to-noise
ratio at the input of the inner Viterbi decoder and D2 is

given by

D2 = (A-2)

The coefficients f/d of the transfer function bound

oo

d=d I

(truncated to 15 terms) for the K = 7, r = 1/2 con-
volutional code with free distance d! = 10 are given in

Fig. A-1.

A tighter upper bound for the transition probability e2

can be obtained as [2]

e2 <- __, /3dQ \ v-_o 2 ,]
d=d.t

(A-4)

for the end-to-end system bit error probability Pb can be

obtained once again by using the transfer function bound

and Fig. A-1. Then the transfer function bound on Pb can

be expressed as [2]

1 oo

Pb <_ _ ___ _dD_ (A-6)
d= d I

where

D1 ----X/4e(1 - v) (A-7)

The upper bound on the end-to-end bit error probabil-

ity versus BSNR1 = Ebl/Nol and BSNR2 = Eb2/No2 is

shown in Figs. A-3 and A-4. The required BSNR1 and
BSNR_ to achieve bit error probability of 10 -3 using the

upper bound in Eq. (A-6) is shown ill Fig. A-5.

A simple lower bound on the bit error probability can
be obtained by using an argument discussed in [3] that

is based on a "genie" providing side information to the

decoder. The performance of such a genie-aided decoder
will be better than that of an actual decoder. Thus, this

argument provides a lower bound on the performance of an
actual decoder. For linear convolutional codes, the genie

observes the transmitted sequence x and then reports to

the receiver that the transmitted sequence was either x or

a sequence _ within the distance d! (the free distance of

the code) from x. Then a lower bound on the bit error

probability of rate 1/n codes can be obtained as

where d's and _d'S are given in Fig. A-1. The two cas-
caded BSC's, with transition probabilities E1 and ¢_, can

be modeled as a single BSC with transition probability c,

which is related to el and e2 as

e = el+e2- 2ele2 (A-5)

Pb>_Pal, (h-S)

where Pdr represents the pair-wise error probability be-
tween x and _, separated by df. For this case then the

lower bound on e2 is

The cascaded channels and the equivalent BSC are

shown in Fig. A-2.

Now it can be assumed that the outer convolutional

code and its Viterbi decoder are operating over this sin-

gle BSC with transition probability e. An upper bound

e2 >- Q \ u-_o2 ]

Finally, for even dI one can obtain a lower bound on
the end-to-end bit error probability as
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P_>
dj

z '"
k = dl12+1

1 { dI "_:,_1/2(1__.)a,/2
+ 7 t,ds12)

(h-10)

where d! = 10 and e is given by Eq. (A-5) with ¢2 re-

placed by the lower bound in Eq. (A-9). Unfortunately,
the lower bound on the bit error probability is not tight.

For high signal-to-noise ratios, the lower bound is 1/36th

of the upper bound. For this reason, simulation results

are also provided for this case, as shown earlier in Figs. 6
and 7.
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Fig. A-1. Transfer function bound coefficlents

for the K = 7, r = 1//2 convolutlonal code.
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Fig. A-2. Cascaded BSC channels.
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Appendix B

Simulation Studies of 3-bit Quantized Coding Systems

In this appendix, two different analogues of the coding
system 1-bit/Nominal are analyzed for the case of 3-bit

quantization at the Orbiter. Neither one of these cases

models the actual Galileo Probe coding system using 3-bit

symbols stored in the Orbiter tape recorder, because the

effects of the Golay code are not included in this analysis.

In this case again, a 3-bit quantizer is used before the

inner convolutional code. But now for every 3 bits out of
the quantizer, a "0" fill bit is inserted. The received infor-

mation bit signal-to-noise ratio at the input of quantizer

is given by Eq. (1). The received information bit signal-
to-noise ratio for the inner convolutional code is given by

Eq. (2).

I. Simulation Study of Coding System 3-bit/
No-Fill

The block diagram for coding system "3-bit/No-Fill,"
which includes separate decoders and 3-bit quantization

at the Orbiter, is shown in Fig. B-1.

In this case, a 3-bit quantizer is used before the inner

convolutional code. The received information bit signal-

to-noise ratio at the input of the quantizer is given by

Eq. (1). The received information bit signal-to-noise ratio

for the inner eonvolutional code is given by Eq. (2).

Since the inserted O's are known at the inner Viterbi

decoder, one can use a known-state forcing algorithm to

enhance the performance. The known-state forcing algo-

rithm simply adds a vector (N, 0, N, 0,...) to the state

metric vector, periodically, at the times corresponding to

zero bit fills. The value N can be chosen appropriately to
prevent buffer overflow. No zero component of this vector

corresponds to states having a zero in the least significant
place. Simulation results for end-to-end bit error proba-

bility are shown in Figs. B-5 and B-6.

Simulation results for end-to-end bit error probability
are shown in Figs. B-2 and B-3.

II. Simulation Study of Coding System 3-bit/
Fill

The block diagram for coding system "3-bit�Fill,"
which includes 3-bit quantization and an added fill bit at

the Orbiter, is shown in Fig. B-4.

Comparing coding systems 3-bit/No-Fill and 3-bit/Fill,

there is a loss of about 10 log10 4/3 _ 1.25 dB for the cod-

ing system 3-bit/Fill due to the change of transmission

rate, but there is a gain of about 1 dB by using known
state forcing. Therefore, it seems that the overall per-

formances of coding systems 3-bit/No-Fill and 3-bit/Fill
are very close to each other. Comparing coding system

3-bit/No-Fill with coding system 1-bit/Nominal, one con-

cludes that coding system 3-bit/No-Fill offers about 2 dB
of performance improvement.
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Fig. B-1. Block diagram for the coding system 3-blUNo-lill.
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